Pelvic Organ Prolapse and Urinary Incontinence

Geoffrey D. Towers, MD, FACOG
Wright State University
School of Medicine
Department of OB/GYN

Introduction

- Anatomy Overview
- Pelvic Organ Prolapse
- Urinary Incontinence
Endopelvic Fascia: Vaginal Support

- **Level I:** Upper Vagina & Cervix
 - Cardinal & Utero-Sacral Ligament complex
- **Level II:** Mid-Vagina, Bladder, Rectum
 - Anteriorly: Pubo-cervical fascia
 - Laterally attaches to Arcus Tendineus
 - Posteriorly: Recto-vaginal fascia
- **Level III:** Lower Vagina, Urethra
 - Anteriorly: Perineal Membrane
 - Posteriorly: Perineal Body

General Support

- Fusion
- Attachment
- Suspension

Endopelvic Fascia
Pelvic Organ Prolapse and Urinary Incontinence – Towers

Retropubic Anatomy

Bladder

ATFP

Posterior Compartment

Pelvic Organ Prolapse

- ACOG Practice Bulletin #176 (April 2017)
- Peak sx ages 70-79
- Number of women with sx expected to increase by 50% by 2050
- 41-50% women have some pelvic relaxation on examination
- 3-6% of these have symptoms
Epidemiology of POP
- 300,000 surgeries in U.S. annually for POP
- Incidence of surgery 1.5-1.8 surgeries per 1,000 women-years
 - 13% lifetime risk.
- Natural hx: 78% stable over 1 year
 - Most will not worsen if don’t want treatment.

Pathophysiology of POP
- Upright position: The Levator Ani muscles form the Pelvic Floor (Horizontal)
- Levator Ani (3 muscles):
 - Pubococcygeus, Ileococcygeus, & Coccygeus
- Attaches to:
 - Pubic symphysis, Arcus tendineus, Ischial spine, & Coccyx
- Urethra, Vagina, & Rectum pass through the Levator Ani

Pathophysiology of POP
- Normal:
 - Levator Ani: horizontal
 - Upper 1/3 vagina: horizontal
 - With increased abdominal pressure:
 - the rectum, uterus, & upper vagina are pushed down & backward on top of Levator Ani
- Prolapse:
 - Levator Ani: oblique or vertical
 - Upper 1/3 vagina: oblique or vertical
 - With increased abdominal pressure:
 - the rectum, uterus, & upper vagina fall through the genital hiatus of L.A.
Pelvic Organ Prolapse and Urinary Incontinence – Towers

P.O.P. – Risk Factors
- Advancing Age
 - Post-menopausal >> Pre-Menopausal
- Caucasian >> African
- Parity

Risk Factors for POP
- Childbirth injury
- Aging
- Denervation
- Genetics / poor collagen
- Constipation
- Prior pelvic surgery
- Chronically increased intra-abdominal pressure
- Occupation
- Congenital factors

Risk Factors for POP: Childbirth Injury
- Risk Factors:
 - Routine Episiotomy
 - Forceps
 - 3rd & 4th degree tears
 - OP position
 - Prolonged 2nd stage of labor
 - Macrosomia
- Pudendal nerve Neuropathy (Tetzschner, 1997)
 - Present: SVD & C-sec for 2nd stage arrest of labor, equal occurrence
 - Absent: Elective C-sec
 - Pushing & straining lead to Neuropathy
Risk Factors for POP: Childbirth Injury

- Damage to Internal & External Anal sphincters
 - Anal Ultrasound: assess Int. & Ext. sphincters
 - Primiparous: 35% damaged sphincters, only 3% injuries recognized
 - Multiparous: 40% preexisting defects, 44% after delivery
 - Only 1/3 with defects had anal incontinence
 - other protective mechanism exists

(Sultan, 1993, N Engl J Med; 329:1905)

- Primiparous: 35% damaged sphincters, only 3% injuries recognized
- Multiparous: 40% preexisting defects, 44% after delivery
- Only 1/3 with defects had anal incontinence
 - other protective mechanism exists

Risk Factors for POP: Aging

- Pelvic muscles weaken with age
 - Kegel exercises strengthen Levator Ani
- Decreased estrogen after menopause
 - ERT: - Strengthens vaginal tissues
 - Increases skin collagen content
 - Increases urethral closing pressure
 - Decreased elastic collagen fibers with age

(Versi, 1998)

Risk Factors for POP: Denervation of Pelvic Floor

- EMG studies (Pudendal nerve):
 - Prolonged motor terminal latencies after SVD, not C-sec
 - 5-yr F/U: persistent abnormal EMG’s, parous > nullip
- Increased denervation associated with:
 - Aging, Childbirth (with reinervation), SUI, POP
- POP & SUI: Prolonged conduction to urethral muscle
- POP, no SUI: Prolonged conduction only to pelvic floor
 - Smith, Br J Ob Gyn; 1989;96:24-32
Risk Factors for POP: Genetics / Poor Collagen
- Family history: POP or SUI
- Congenital weakness:
 - Nulliparous with POP: Defective utero-sacral & cardinal ligaments
- Poor collagen
 - with POP: more Type III collagen - weaker (Norton, 1992, Neurourol Urodyn; 11:2)
 - with SUI: 30% less total collagen (Falconer, 1994, Ob Gyn; 84:583)

Risk Factors for POP: Constipation
- Excessive straining
- Stretching of pudendal nerve → damage
- Progressive neuropathy & dysfunction
- Case-control study:
 - with POP: 61% constipated
 - normal: 4%
 - (Spence-Jones, 1994, Br J Ob Gyn, 101:147)

Risk Factors for POP: Prior Pelvic Surgery
- Predisposes to prolapse at a site opposite to the original repair
- Enterocele/ Rectocele after Urethropexy
 - 27% (Wiskind, 1992)
- Cystocele after Sacrospinous Ligament Fixation
 - 15-30% (several studies)
- Neurologic damage from surgery (Benson, 1993; Ob Gyn; 82:387)
Risk Factors for POP: Increased Abdominal Pressure
- Chronic increased intra-abdominal pressure
 - Smoker
 - COPD
 - Obesity
- Gradually damages supporting tissues

Risk Factors for POP: Occupation
- Airborne paratroopers
 - Parachute jumps led to paravaginal defects (Davis, 1996)
- Assistant nurses
 - Repetitive heavy lifting
 - Odds ratio of 1.6
 - (Denmark, 1994)

Risk Factors for POP: Congenital Factors
- Spinal cord pathway disease:
 - Spina bifida
 - Muscular dystrophy
 - Myelodysplasia
 - Trauma
- All lead to flaccid paralysis of pelvic floor muscles
Types of Prolapse Defects

- Anterior Compartment:
 - Cystocele, Urethrocele
- Upper Compartment:
 - Uterine Prolapse, Vaginal Vault Prolapse, Enterocele
- Posterior Compartment:
 - Rectocele, Perineal Body Defect, Descending Perineal Syndrome, Anal Sphincter Defect, Rectal Prolapse

POP: Associated Findings

- Urinary Disorders
- Fecal Disorders
- Sexual Dysfunction
- Pelvic Pain

POP: Urinary Disorders

- Urinary Incontinence
 - Stress Urinary Incontinence
 - Potential SUI
 - Urge Incontinence
- Detrusor Instability
- Urinary Retention
 - Urethra kinks & obstructs with advancing prolapse
 - 30% with PVR > 100 cc (Coates, 1997)
 - 8% with hydronephrosis (Beverly, 1997)
Pelvic Organ Prolapse and Urinary Incontinence – Towers

Diagnosis
- History
 - Pelvic Pressure/Pain
 - Something Falling Out
 - Incontinence
 - Splinting
- Physical Examination (complete)
 - POPQ
 - Baden-Walker
 - Assessment of tone

POPQ
- Stands for "Pelvic Organ Prolapse Quantification"
- Adapted by the International Continence Society
- Also AUGS, SGS
- Standard System of Terminology
- Objective, Site-Specific, Reproducible
Pelvic Organ Prolapse and Urinary Incontinence – Towers

Cystocele
- May involve Urethra
 - Cystourethrocele
- DDX:
 - Diverticulum
 - Skene’s Gland
 - Mass Lesion
- Associated with incontinence
Cystocele
- Can be midline or lateral
- Lateral cystocele requires special attention
 - Lateral attachment to AFP
 - Apical support/suspension is key

Repair of Midline Cystocele

ATFP Detachment (L I/II)
Rectocele

- Look for associated enterocele
- Splinting with Bowel Movements
- Often associated with perineal defect
- Site-specific repair preferred over levator plication
- Suspension (level I) often necessary

Enterocele

- True Hernia
- Contains Bowel/Omentum
- Need to repair if found
- High index of suspicion
Enterocele Repair

Vault/Uterine Prolapse

- Similar sx to other prolapse
 - Obstructive voiding
 - May be severe!
 - Irritation/ulceration
 - Stasis/rubbing
 - Cervical Elongation

Vault prolapse with enterocele
Pelvic Organ Prolapse and Urinary Incontinence – Towers

Vaginal Vault Prolapse
Stage IV

- Ba
- C
- Bp

Cervical Ulceration
- Stasis
- Rubbing

Hyperkeratosis
Vault Prolapse Management

- Apical support
 - Pessary
 - 4000+ years of experience
 - Excellent for select patients
 - Surgery
 - Abdominal vs. Vaginal Approach
 - Restore “normal” anatomy
 - Suture repair vs. Mesh
 - Mesh “kit”?
 - No treatment

Rectal Prolapse

- Rectal prolapse

Rectal prolapse
Pelvic Organ Prolapse and Urinary Incontinence – Towers

Rectal Prolapse

Pelvic Organ Prolapse
- All 3 are inter-related:
 1. Pelvic Organ Prolapse
 2. Urinary Incontinence
 3. Anal Incontinence
- History, Exam, and Testing need to address all 3 of these possible diagnoses

Urinary Incontinence
- ACOG/AUGS Practice Bulletin #155 (Dec 2015)
- Good Review
Normal Function
- Storage
 - Keep urine in bladder
- Micturition
 - Let urine OUT of the bladder
- It's all physics!
 - If bladder pressure > urethral pressure, urine flows.

Prevalence of Incontinence
- Young women 25%
- Middle aged/postmenopause 44-57%
- Older Women 75%
- Only 45% of women in U.S. with at least weekly urine leakage seek care.

Urinary Incontinence Definitions
- Urinary Incontinence:
 - Involuntary loss of urine that is a social or hygienic problem. 3 Main Types:
- Stress Urinary Incontinence:
 - Physical exertion: cough, sneeze, laugh, exercise, lifting
- Urge Urinary Incontinence:
 - Assoc. with urge to void, more bothersome than SUI
- Mixed Urinary Incontinence
Costs of Incontinence
- The estimated 2.6 million elderly community dwelling incontinent women spent approximately 4.8 billion dollars on incontinence care.
- 2.2 billion of this was on pads, briefs, other protective garments and supplies.

Anatomy of Stress Incontinence
- Loss of urethral support allows unequal transmission of abdominal pressure with stress events
 - Also loss of posterior urethrovesical angle (PUV)
- Urethra displaced instead of compressed
- IVP>mUCP WET
- "Garden hose in the mud…"
- Position of urethra more important than PUV

Urge Urinary Incontinence
- Frequency/Urgency
- "Can’t make it”
- Difficult to hold urine with urge
- "Toilet mapping”
- Physiologic
 - Loss or impairment of normal neurologic feedback pathways
 - “Detrusor-sphincter dyssynergia”
Pelvic Organ Prolapse and Urinary Incontinence – Towers

Physiology of Micturition

- Detrusor Function
 - Parasympathetic = contraction = micturition
 - Acetylcholine (muscarinic) receptors (M2, M3)
 - Sympathetic = relaxation = Storage
 - Adrenergic (Beta) receptors
Neurotransmitter Receptors of Bladder & Urethra

Rohner, 1983

Neurophysiology

- Four basic autonomic and somatic loops
 - I- Cerebral cortex to brainstem (modifies sensory stimuli from loop II)
 - II- Sacral micturition center (SMC, S2-S4) and detrusor to brainstem (and back, to activate III, if not inhibited by I)
 - III- Bladder wall to SMC, to urethra (relaxation of urethral sphincter as bladder contracts)
 - IV- Cerebral cortex to SMC to urethral striated muscle (voluntary relaxation and initiation of voiding)
Normal Micturition

Diagnosis

Differential Diagnosis
- Genitourinary Etiology
 - Filling/Storage disorders
 + Urodynamic SUI
 + Detrusor Overactivity (idiopathic/neurogenic)
 + Mixed
 - Fistula
 + Vesical
 + Urethral
 + Ureteral
 - Infectious
 + UTI
 + Vaginitis
 - Congenital
 + Ectopic ureter
 + Epispadias
Pelvic Organ Prolapse and Urinary Incontinence – Towers

Differential Diagnosis
- Nongenitourinary Etiology
 - Functional
 - Neurologic
 - Cognitive
 - Psychologic
 - Physical Impairment
 - Environmental
 - Pharmacologic
 - Metabolic

DIAPPERS
- D Delirium / confusion
- I Infection
- A Atrophic urethritis/ vaginitis
- P Pharmaceuticals
 - Psychological esp depression
- E Endocrine (hypercalcemia, hyperglycemia)
- R Restricted mobility
- S Stool impaction

Basic Office Evaluation
- Thorough history
- Physical examination
- Screening Urinalysis
- Post-void residual volume measurement
- Demonstration of stress incontinence
- Assessment of urethral mobility
Pelvic Organ Prolapse and Urinary Incontinence – Towers

History

- Most important!!
- Characterization
- Duration
- Precipitating events
- Fluid intake
- Frequency
- Effect on life
- Storage/Micturition
- Treatment goals

- Storage
 - Frequency
 - Nocturia
 - Urgency
 - Incontinence

- Micturition
 - Hesitancy
 - Stream abnormality
 - Straining
 - Retention
 - Pain

History

- PMHx
 - MS
 - DM
 - CVA
 - Back problems
- PSHx
- Allergies
- Medications

- Voiding diary
 - Include volumes!
- Validated questionnaires

Medication Effects

<table>
<thead>
<tr>
<th>Medication Type</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dopaminergic Agonist</td>
<td>Urethral Resistance</td>
</tr>
<tr>
<td></td>
<td>Detrusor Contractility</td>
</tr>
<tr>
<td>Cholinergic Agonist</td>
<td>Detrusor Contractility</td>
</tr>
<tr>
<td>Beta-adrenergic Agonist</td>
<td>Detrusor Contractility</td>
</tr>
<tr>
<td>Methyl Xanthine (Caffeine)</td>
<td>Urethral Resistance</td>
</tr>
</tbody>
</table>
Bladder Diary

Urinalysis
- CC or cath specimen
- Treat any UTI empirically as uncomplicated
- UTI prior to any further workup
- Send for culture
- If microscopic hematuria (>2 RBC/HPF on microscopy) then cystoscopy and CT

Physical Exam
- Exclude confounding or contributing factors
- Diverticulum
- Fistula
- Prolapse
- Pelvic floor musculature/neurologic exam
- Discharge
- Rectal examination
Demonstration of Stress Incontinence

- Cough stress test
 - Full bladder (or backfill to 300cc)
 - If recumbent negative then test standing
 - If both negative despite SUI complaints then needs multichannel urodynamic testing

Cough Stress Test: Spurt of Urine

- At least 30 degrees from horizontal
- Point Aa
- Q-tip
- Visualization
- Palpation
- Ultrasound
- If absent, 1.9x increase in sling failure
 - Consider bulking or fascial sling
Assessment of Urethral Mobility

- Displacement angle at least 30 degrees from horizontal

Post-void residual volume

- Measure by catheter or ultrasound
- Normal is <150cc
- If elevated, then re-test at different time
- If elevated, consider further testing (voiding pressure-flow study)

Multichannel Urodynamics

- Not required for initial evaluation of uncomplicated SUI
- Indicated for:
 - Unclear diagnosis on basic evaluation
 - Failure to improve with treatment
 - Prior pelvic floor or incontinence surgery
 - Symptoms not correlating with objective findings
 - Based on clinical judgment
Pelvic Organ Prolapse and Urinary Incontinence – Towers

Treatment Strategies

- **UTI first**
- **Behavior/Lifestyle modification**
 - 50% reduction in incontinence compared with controls in RCT
 - Bladder training
 - Weight Loss (obesity 4.2x risk for SUI)
 - RCT 47% reduction SUI with 8% reduction baseline weight
 - Diet/Fluid Management
 - Eliminate irritants (coffee, tea, artificial sweeteners)
- **Pelvic muscle exercises/PT**
 - Objective 1-year cure SUI 59% compared to 77% with sling

Pharmacotherapy

- **Antimuscarinic**
 - Multiple options
 - Affect M2 and M3 receptors
 - All have antimuscarinic side effects (dry mouth)
- **Beta Agonist**
 - Mirabegron
 - B-3 adrenergic receptor in detrusor
 - Not for patients with severe HTN, renal dx, liver dx
- **Onabotulinumtoxin A (BOTOX)**
 - Injected cystoscopically (100 units)
 - Similar reduction to antimuscarinic
 - Better rate of complete resolution (27% vs. 13%)
 - Higher UI (33%) and voiding dysfunction (5%)
Pelvic Organ Prolapse and Urinary Incontinence – Towers

Treatment
- What type of receptors at urethra?
 - alpha-receptors: contractile
 - alpha agonists (theoretically) treat S.U.I.
- What type of receptors at bladder?
 - beta-receptors: Inhibitory
 - cholinergic: contractile
 - anti-cholinergics treat D.O.
 - Beta agonists treat D.O.
 - BOTOX treats D.O.

![Image: Neurotransmitter Receptors of Bladder & Urethra](Rohner, 1983)

![Image: Continence and Micturition](continence_micturition.png)

Droegemueller Ch. 21
Anticholinergic Drugs
- Tolterodine (Detrol)
- Oxybutynin (Ditropan)
- Solifenacin (VESI-Care)
- Darifenacin (Enablex)
- Trospium Chloride (Sanctura)
- Fesoterodine Fumarate (Toviaz)
- Imipramine (Tofranil)
- Amytriptyline (Elavil)

Beta Agonist
- Mirabegron (Myrbetriq)

Alpha Agonists
- Pseudoephedrine (Sudafed)
- Phenylephrine
- Phenylpropanolamine
- Similar drugs, often found OTC
- Risk – Hypertension!
Pelvic Organ Prolapse and Urinary Incontinence – Towers

Treatment Strategies

- Sacral Neuromodulation
 - 62% clinical success rate (26% completely dry, 36% with >50% reduction in episodes)
 - For UUI refractory to first-line treatment/medical management
 - Also indicated for non-obstructive retention and fecal incontinence

Treatment Strategies

- Intradetrusor Botulinum Toxin-A (BOTOX)
 - 100-300 units in 20cc saline, injected at 20 sites posterior dome.
 - For UUI refractory to first-line treatment/medical management
 - Complete continence 42%-87% (300U)
 - Urinary retention/CISC 17%, UTI 49%
 - Duration limited (6 months)

Treatment Strategies

- Incontinence pessary
 - May improve sx of SUI and MUI
 - No objective evidence reported
 - Good option for young women who have not completed childbearing
 - Level B evidence
Pelvic Organ Prolapse and Urinary Incontinence – Towers

Treatment Strategies

- **Bulking Agents (level B evidence)**
 - For ISD, non-mobile urethra, persistent sx after surgery, women with medical co-morbidities that preclude surgery
 - Generally less effective than other surgical treatment (factor of 1.7-4.8)
 - Prone to need for repeat injections

- **Surgery**
 - Aimed at restoring anatomic support to urethra and/or bladder base
 - Midurethral Sling (TVT/TOT or similar)
 - Burch colpourethropexy
 - Suburethral (Bladder Neck) Sling
 - Trans/Peri-urethral injections (adds bulk to urethra, specifically for ISD)

Treatment Strategies

- **Surgical Treatment (SUI)**
 - Can be first-line for uncomplicated SUI in appropriately counseled patient (better cure rates compared to PT)
 - Midurethral mesh sling is “standard of care”
 - TOT and TVT essentially equal in effectiveness
 - TOT less obstruction, fewer significant injuries, more groin pain
 - TVT more vascular/visceral injury, more blood loss, more obstruction
 - Mesh complications equal (2%)
 - Single incision slings are LESS effective
 - Burch colpourethropexy
 - Fascial sling (fixed urethra, mesh complication)
Pelvic Organ Prolapse and Urinary Incontinence – Towers

SUI and Prolapse
- 40% of women without SUI will develop SUI after prolapse surgery (occult SUI)
- Screen for it
- Colpopexy and Urinary Reduction Efforts (CURE) trial
 - Significant reduction in postoperative SUI with Burch at time of ASC in stress-continent patients (24% vs. 44%)
- Vaginal Prolapse Repair and Midurethral Sling trial
 - Similar finding, but with risk of adverse effects from incontinence procedure

Summary
- Pelvic organ prolapse and urinary incontinence closely related and interdependent
- Many risk factors
- Comprehensive evaluation needed
- Understanding the anatomy and physiology is essential for accurate diagnosis and treatment

Questions?