Genetics of Gyn Cancer

Mary Helen Quigg, MD, FACOG, FACMG

Hereditary Cancer
- Not a single gene
- Not a single mutation
- Not like sickle cell anemia
- Autosomal dominant

Genetic Testing
- Positive
- Negative
 - May yes and maybe no
- VUS
Genetic Testing
- Positive
- Deleterious mutation
- Known risks
- Recommended management plan
- Family members should be tested

Genetic Testing
- Negative
 - Maybe yes and maybe no
- True negative
- Maybe negative

Genetic Testing
- Variant of uncertain significance
 - VUS
- Change is present
- Benign vs potentially bad
- Follow-up
NCCN
- National Comprehensive Cancer Network
- Guidelines
 - Counseling
 - Testing
 - Management
- Police (Ish)

Women’s Health Cancer
- Lynch Syndrome
- Hereditary Breast and Ovarian Cancer
Colorectal Cancer

- 135,430 new cases annually
- ~50,260 deaths annually
- 9% of all cancer deaths

Colorectal Cancer

- Population risk
- Men
 - 1 in 21, 4.7%
- Women
 - 1 in 23, 4.4%

Colorectal Cancer

- Sporadic
 - No family history
 - 70% of the cases
 - Over the age 50
 - Dietary and environmental factors
Lynch Syndrome
- Dr. Henry Lynch
 - Nebraska family
- Dr. Marjorie Shaw
 - Michigan family
- Landmark paper 1966
- HNPCC
 - Hereditary Non-polyposis Colon Cancer

Lynch Syndrome
- Lynch Syndrome
 - CRC
 - Endometrial
 - Ovarian
 - Small intestine
 - Hepatobiliary
 - Urologic
 - Skin
 - Brain

Lynch Syndrome
- Most common cause of inherited CRC
- Associated
 - Endometrial cancer
 - Ovarian cancer
Lynch Syndrome

- Life time risk
- CRC
 - 52-82%
 - Mean age at diagnosis 44-61

- Endometrial cancer 1st malignancy
- If Lynch, then ~50% present with EC
- High incidence of metasynchronous or synchronous CRC or other Lynch tumor

- Autosomal Dominant with incomplete penetrance
- Population frequency
 - ~ 1 in 279
Lynch Syndrome

- Germline mutation in one allele
- Second allele inactivated somatically
 - Mutation
 - Loss of heterozygosity
 - Epigenetic silencing by promoter hypermethylation

2-Hit Theory

- Mutation
- Wild type
- 1st hit
- 2nd hit
- Early onset Cancer
- Late onset Cancer

Lynch Syndrome

- 3% of newly dx CRC
- 3% of endometrial cancer
Lynch Syndrome

- DNA mismatch repair genes, MMR
- Identification and repair of DNA replication errors
 - Deletions
 - Insertions
 - Substitutions

Lynch Syndrome

- DNA mismatch repair genes, MMR
 - MSH2
 - MLH1
 - MSH6
 - PMS2
 - EPCAM (not a MMR gene)

Lynch Syndrome

- Microsatellites
- Stretches of 2-5 nucleotides repeated multiple times
- Microsatellite Instability High (MSI Hi)
 - Accumulations of these stretches
Lynch Syndrome

- If mutation in MMR gene
- Then High MSI
- Then
 - Frameshift mutations
 - Protein truncation
 - Inactivation of the cancer regulatory genes

Lynch Syndrome

- Bottom line
- Increase mutation rate
- Failure of repair
- Microsatellite instability, MSI

Lynch Syndrome

- Tumor testing
- Can be done on paraffin tissue blocks
- MSI by PCR
- IHC by immunohistochemistry
 - MMR proteins
 - MLH1 methylations analysis
Lynch Syndrome

- Tumor tissue compared to normal tissue
- MSI/IHC
 - MSI high >30% with instability
 - MSI Low <30% with instability
 - MSI stable 0% instability

11% of sporadic CRC tumors have MSI instability

20-30% of endometrial cancers exhibit MSI
 - Majority are due to somatic MLH1 promotor methylation

Diagnosis by personal and family history
- Young age
- Multiple family members with a LS tumor
- Amsterdam criteria
Lynch Syndrome

- Amsterdam II criteria
- At least 3 relatives with LS related cancer
- One should be a 1st degree relative of the other 2
- AND

Lynch Syndrome

- AND
 - At least 2 successive generations affected
 - At least 1 DX before 50
 - FA excluded
 - Tumors verified by path exam

Lynch Syndrome

- Universal tumor testing for MSI/IHC
- CRC and Endometrial cancer
- Significant number of LS patient’s ID’d who do not Amsterdam criteria
Lynch Syndrome

- DNA testing if
 - MSI suggestive of a mutation
 - FHX suggestive of Lynch
 - Suspicious history and no tumor available

Lynch Syndrome
Endometrial cancer

- Population risk for Endometrial CA
 - 1 in 41, 2.8%
- Increasing since 1990 due to obesity

Lynch Syndrome
Endometrial cancer

- Risk depends on which gene is mutated
 - MSH6 64-72%
 - MSH1 or MLH1 40-50%
 - PMS2 15%
Lynch Syndrome
Endometrial cancer

- If diagnosed less than 50
- 9% with a mutation

Lynch Syndrome
Endometrial cancer

- Majority well differentiated endometrioid adenocarcinoma
- DX early stage
- Arise in the LUS

Lynch Syndrome
Endometrial cancer

- If Lynch NCCN guidelines
 - Yearly endometrial biopsy
 - 30-35 or 10 years younger than earliest family case
 - Pelvic ultrasound often done but controversial
Lynch Syndrome
Endometrial cancer

- Prevention
- Chemoprevention
 - OCPs
 - Depo
- Limited data

Lynch Syndrome
Endometrial cancer

- Prevention
- Surgery
 - Hysterectomy and BSO
 - At time of CRC surgery
 - Finished child bearing

Lynch Syndrome
Endometrial cancer

- 108 women with hyst and or BSO
- 433 no prophylactic surgery
- Median follow-up 13 years
Lynch Syndrome

Endometrial cancer

- Prophylactic surgery
 - 3 with occult EC at time of hyst
 - No EC, ovarian Ca or primary peritoneal cancer
- No surgery
 - 33% endometrial cancer
 - 5% ovarian cancer

Ovarian Cancer

- Ovarian
- Tubal
- Primary peritoneal

Ovarian Cancer

- Sporadic
- BRCA 1 or 2
- Lynch syndrome
- Other
Ovarian Cancer

- Second most common GYN malignancy
- Population risk 1.5%
- Lynch Syndrome risk 3-20%

Ovarian Cancer

<table>
<thead>
<tr>
<th>Relative Risk</th>
<th>Lifetime Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>General population</td>
<td>1.0</td>
</tr>
<tr>
<td>BRCA1 Mutation</td>
<td>35-46%</td>
</tr>
<tr>
<td>BRCA2 Mutation</td>
<td>13-23%</td>
</tr>
<tr>
<td>Lynch mutation</td>
<td>3-20%</td>
</tr>
</tbody>
</table>

Ovarian Cancer

Lynch Syndrome

- Age at dx 43-50 vs 60
- MHL1 and MSH2 most common
Ovarian Cancer
Lynch Syndrome

- Histopathology and survival similar
- Path
 - Serous
 - Endometrioid
 - Mucinous
 - Clear cell

Ovarian Cancer
Lynch Syndrome

- Earlier stage at diagnosis
 - I or II
 - No 5 year survival advantage

Ovarian Cancer
Lynch Syndrome

- Average age of OC dx in US is 63 years
- If young, think hereditary etiology
<table>
<thead>
<tr>
<th>Cancer Site</th>
<th>MLH1</th>
<th>MSH2</th>
<th>MSH6</th>
<th>PMS2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td>Any</td>
<td>44-79%</td>
<td>38-78%</td>
<td>25-47%</td>
</tr>
<tr>
<td>Women</td>
<td>Any</td>
<td>44-79%</td>
<td>38-78%</td>
<td>25-47%</td>
</tr>
<tr>
<td>CRC</td>
<td>60-65%</td>
<td>40-65%</td>
<td>50-60%</td>
<td>18-30%</td>
</tr>
<tr>
<td>Endometrial</td>
<td>17-48%</td>
<td>27%</td>
<td>17-48%</td>
<td>39%</td>
</tr>
<tr>
<td>Ovarian</td>
<td>20%</td>
<td>20%</td>
<td>1%</td>
<td></td>
</tr>
</tbody>
</table>

Hereditary Breast and Ovarian Cancer

- BRCA 1 and 2 mutations
- Tumor suppressor genes
- DNA repair pathways
- Two hit
- BRCA1 (17) and BRCA2 (13)

HBOC

- Population frequency
 - 1 in 400 to 1 in 800
HBOC

- Epithelial ovarian cancer
 - ~9-24%
- Breast Cancer
 - ~4.5%

5-10% unselected women with breast cancer
20% with family history of breast cancer
BRCA1 and 2 TIP OF THE ICEBERG
Bunch of genes besides BRCA 1 and are associated with breast cancer

Li-Fraumeni syndrome
Peutz-Jeghers syndrome
PTEN Hamartoma tumor syndrome
Hereditary diffuse gastric cancer syndrome
Lynch syndrome
CHEK2
ATM
PALB2
And on and on
Up to 25% non-BRCA 1 or 2 genes
Breast Cancer

- 1 in 8 by 85
- 1 in 12 by 70
- Most not due to HBOC

BRCA Mutations

- Population Risk
 - 1 in 400-1 in 800
- Ashkenazi Jewish
 - 1 in 40
 - 3 founder mutations
 - If AJ and Breast cancer, risk high

NCCN

- Personal history of breast cancer
 - Young age, ≤ 45
 - Two breast primaries
 - Triple negative breast cancer, ≤ 60
NCCN

- Personal history of breast cancer
 - Family hx multiple breast cancers
 - AJ ancestry
 - Ovarian cancer, fallopian tube cancer, 1* peritoneal cancer

NCCN

- Known Genetic mutation
- Family hx multiple breast cancers
- AJ ancestry and BRCA 1 or 2 associated cancer
- Ovarian cancer, fallopian tube cancer, 1* peritoneal cancer
- Family history of male breast cancer

NCCN

- PHx or FHx of 3 or more associated cancers
 - Pancreatic
 - Prostate
 - Melanoma
 - Sarcoma
 - Adrenal
 - Brain
 - Leukemia
 - Gastro
 - Colon
 - Endometrial
 - Thyroid
 - Kidney
Risk Assessment Tools

- BRCAPRO
- BOADICEA
- Tyer-Cuzick
- Breast Cancer Surveillance Consortium
- Don’t use GAIL

Risk

- Ovarian cancer
- Regardless of age and family history
- 15% BRCA 1 or 2 mutation
- AJ and Ovarian cancer
 - Up to 40% will have a mutation

HBOC

Lifetime risks

- BRCA 1 mutation
 - Breast 72%
 - Ovarian 44%
- BRCA 2 mutation
 - Breast 69%
 - Ovarian 17%
BRCA Mutation

- Population Risk
 - 1 in 300 to 1 in 800
- Ashkenazi Jewish
 - 1 in 40
 - 3 founder mutations

BRCA Mutation

- Stage at presentation
 - Ovarian cancer
 - 70% III or IV
- BRCA 1 or 2 carriers, breast cancer
 - Similar to non-carriers

BRCA Mutation

Ovarian Cancer

- Tend to be higher grade tumors
- Histology similar to non-carriers
- Serous adenocarcinoma the most common
- Mucinous and borderline rare
BRCA Mutation
Ovarian Cancer
- Mutation carriers tend to have a better prognosis than non-carriers
- More sensitive to platinum based treatment

Lynparza
- Olaparib
- PARP Inhibitor
 - Poly (ADP-ribose) Polymerase (PARP) Inhibitor
- Recurrent ovarian cancer
- BRCA ½ mutation

Lynparza
- Recurrent ovarian cancer
- BRCA ½ mutation
- CDX – Myriad
 - FDA approved BRCA ½ test
- Reflex to MyRisk panel
Lynparza

Never stop at CDX

BRCA Mutation
Pancreatic Cancer

- BRCA1
 - ~1%
- BRCA2
 - ~4.9%

BRCA Mutation
CRC

- BRCA1
 - 4 fold increased risk in carriers less than 50
- BRCA2 and non-carriers
 - No increased risk over the population risk
Risks

- Triple Negative Breast cancer
 - ER/PR/HER2 negative
 - Less than or equal to 60
- 5 fold increased risk of a mutation
 - 8.5% BRCA1 mutation
 - 2.7% BRCA2

Risks

- Triple Negative Breast cancer
- African American
- DX 50-59
 - No family history
 - 7.5% BRCA1 or 2 mutation
- Other mutations
 - 3.7%

Lifetime Risks

- BRCA 1 mutation
 - Breast 72%
 - Ovarian 44%
- BRCA 2 mutation
 - Breast 69%
 - Ovarian 17%
Second Breast Cancer

- BRCA 1 mutation
 - First cancer 25-29
 - 5 year risk 16%
 - 10 year risk 29%
 - First cancer 50-54
 - 5 year 6%
 - 10 year 11.7%

Second Breast Cancer

- BRCA 2 mutation
 - First cancer 25-29
 - 5 year risk 14.6%
 - 10 year risk 26.6%
 - First cancer 50-54
 - 5 year 5.3%
 - 10 year 10.4%

Fallopian Tube Cancer

- BRCA 1 or 2 carriers
- 50% of serous “ovarian Cancer”
- Distal fallopian tube
Fallopian Tube Cancer
- IF FTC
- Then ~30% with a mutation
 - BRCA1 greater than BRCA2
- IF AJ
 - Then up to 55%

Primary Peritoneal Cancer
- Risk increased
- AJ with founder mutation
 - 1.3%
- Non-AJ
 - ?

Uterine Papillary Serous Carcinoma
- Part of the disease spectrum
 - Maybe
- Actual risk not known
 - Low
 - NON-BRCA 1 or 2 mutations
Pancreatic Cancer

- BRCA1
 - ~1%
- BRCA2
 - ~4.9%

Colorectal Cancer

- BRCA 1
 - 4 fold increased risk in carriers less than 50
- BRCA 2 and non-carriers
 - No increased risk over population risk

<table>
<thead>
<tr>
<th>BRCA 1 and 2 Risks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANCER</td>
</tr>
<tr>
<td>Breast</td>
</tr>
<tr>
<td>Contralateral breast</td>
</tr>
<tr>
<td>Ovarian</td>
</tr>
</tbody>
</table>
Other Stuff

- Male breast cancer
- Prostate cancer
- Melanoma
 - Especially ocular
- Stomach and biliary cancer
- Endometrial cancer

Panels

<table>
<thead>
<tr>
<th>HBOC</th>
<th>BRCA 1 and 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast Cancer panel</td>
<td>ATM, BRCA1, BRCA2, CDH1, CHEK2, PALB2, PTEF, TP53</td>
</tr>
</tbody>
</table>

Panels

<table>
<thead>
<tr>
<th>Lynch Panel</th>
<th>MLH1, MSH2, MSH6, PMS2 + EPCAM del/dup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colon Panel</td>
<td>(17 genes) APC, BMPR1A, CDH1, CHEK2, EPCAM, GREM1, MLH1, MSH2, MSH6, MUTYH, PMS2, POLD1, POLE, PTEF, SMAD4, STK11, TP53</td>
</tr>
<tr>
<td>Panels</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>GYN Panel (13 genes)</td>
<td>BRCA1, BRCA2, BRIPI, EPCAM, MLH1, MSH2, MSH6, PALB2, PMS2, PTEN, RAD51C, RAD51D, TP53</td>
</tr>
<tr>
<td>Ovarian Cancer Panel (25 genes)</td>
<td>BRCA1, BRCA2, BRIPI, CDH1, CHEK2, DCCER1, EPCAM, MLH1, MRE11A, MSH2, MSH6, MUTYH, NBN, NF1, PALB2, PMS2, POLD1, POLE, PTEN, RAD50, RAD51C, RAD51D, SMARCA4, STK11, TP53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer Panel (34 genes)</td>
</tr>
<tr>
<td>CancerNext-Expanded (67 genes)</td>
</tr>
</tbody>
</table>