Rh Disease: Prevention and Management

Gregory L Goyert, MD
Division Head, MFM, WHS’s
Henry Ford Health System

Management of Rh disease
Isoimmunization and prevention

- Overview
- Prophylaxis
 - Background
 - Management details
- Isoimmunization
 - Etiology
 - Management details

Management of Rh disease

- Great obstetric success story
- First successful in utero therapy
- Uncommon encounter in practice
 - Other Rh antigens (C, c, E, e)
- Primary duty is to prevent isoimmunization
- Isoimmunization management evolving
Management of Rh disease
Genetics

- Fisher and Race 1946
 - Proposed 3 genes for 3 rhesus antigen groups
 - D, C/c, E/e
 - 1991, rhesus locus localized to short arm chromosome #1
 - 1p34-1p36
 - Only 2 genes identified: RhD and RhCE
 - RhD encodes D; absent in Rh negative
 - RhC/c and E/e inherited linked manner to RhD

- D antigen 7-10,000 mw
- Appears early: 38-day embryo
- Physiologic function unclear
- “D” antigen critical
- Three RhD antigen twists
 - Weak D's
 - Reduced number D antigens expressed
 - Partial D's
 - 'Missing' portions of D antigen
 - When exposed to RhD+ rbc's, patients can form anti-D antibodies to their missing or variant D epitopes
 - RhD pseudogene

Management of Rh disease
Genetics

- Weak RhD and Partial RhD in pregnancy
 - Estimated 0.96% of individuals
 - 0.3% of whites/1.7% of African descent
 - Monoclonal typing sera will label as RhD negative
 - Indirect Coombs will label as RhD positive
 - No longer recommended by AABB for prenatal testing
 - Weak RhD and Partial RhD patients now classified as RhD negative; Rhogen candidates
- Non-pregnant blood typing for donation
 - Indirect Coombs used
 - Weak RhD and Partial RhD typed as RhD positive
 - Avoid sensitizing Rh- recipients
 - Bottom Line
 - Typed as RhD+ as a blood donor and RhD- when pregnant
RhoGam Guidelines

D Variants

<table>
<thead>
<tr>
<th>RhD Blood Type</th>
<th>RhD Pseudogene?</th>
<th>Maternal</th>
<th>Fetal or Newborn</th>
<th>Rh-D Immune Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anergic</td>
<td>RhD positive</td>
<td>RhD antigen, weak partial, or colonies D</td>
<td>Unknown</td>
<td>Yes</td>
</tr>
<tr>
<td>Anergic</td>
<td>RhD positive</td>
<td>RhD antigen, weak partial, or colonies D</td>
<td>Unknown</td>
<td>Yes</td>
</tr>
<tr>
<td>Anergic</td>
<td>RhA positive</td>
<td>RhA antigen, weak partial, or colonies D</td>
<td>Unknown</td>
<td>No</td>
</tr>
<tr>
<td>Anergic</td>
<td>RhA positive</td>
<td>RhA antigen, weak partial, or colonies D</td>
<td>Unknown</td>
<td>No</td>
</tr>
<tr>
<td>Reducian</td>
<td>RhA negative</td>
<td>Any RhD type</td>
<td>RhD antigen, weak partial, or colonies D</td>
<td>Yes</td>
</tr>
<tr>
<td>Reducian</td>
<td>RhA negative</td>
<td>Any RhD type</td>
<td>RhD antigen, weak partial, or colonies D</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- 69% S. African blacks; 21% African Americans
- Serologically RhD negative
 - But, entire RhD gene present on chromosome
 - Amniotic PCR testing would yield false +
- Fetus RhD negative phenotype (serology)
 - Fetus RhD positive by genotype
 - Risk of unnecessary intervention
 - Submit maternal blood with AF for fetal RhD typing to exclude presence of RhD pseudogene

Management of Rh disease

Genetics

- RhD pseudogene
 - 69% S. African blacks; 21% African Americans
 - Serologically RhD negative
 - But, entire RhD gene present on chromosome
 - Amniotic PCR testing would yield false +
 - Fetus RhD negative phenotype (serology)
 - Fetus RhD positive by genotype
 - Risk of unnecessary intervention
 - Submit maternal blood with AF for fetal RhD typing to exclude presence of RhD pseudogene

Prevention

- Rh negative incidence 16%
- Concept of passive antibody to prevent active isoimmunization
- Antibody mediated immune suppression
- First applied to Rh disease in early 1960’s
- Half-life of RhoGAM approximately 24 days
Management of Rh disease
Prevention

- First large postpartum trial 1968
 - Yielded 10 fold decrease (1.8% v. 16%)
- 72 hour “window” due to prisoner trials
 - Protection demonstrated at 13 days
 - Some recommend administration out to 28 days
- Antepartum administration effective
 - Yielded another 10 fold decrease (0.1% v. 1.8%)
- 300 ug RhoGAM “covers” 15cc fetal RBC’s or 30cc fetal whole blood

Management of Rh disease
Prevention

- Indications for RhoGAM
 - Spontaneous/voluntary abortion
 - Threatened abortion
 - Ectopic
 - CVS/amniocentesis/cordocentesis
 - 28 weeks/postpartum
 - Antepartum hemorrhage
 - External cephalic version
 - Trauma
 - Hydatidiform mole
 - IUFD
 - following postpartum tubal ligation
 - TL failure with future pregnancies
 - Avoid cross-matching issues with future transfusions

Management of Rh disease
Prevention

- RhoGAM mechanism of action
 - Likely central inhibition
 - Rh IgG-D antigen complexes may stimulate “immune suppressor substance” that blunts immunologic response
 - Antigen blocking/deviation mechanism less likely
 - Derived from male donors who undergo repeated injections of RhD positive rbc’s
 - No reported cases viral infection
 - Scattered Hep C exposures prior to 1995
Management of Rh Disease

Prevention

- Routine testing first prenatal visit
 - ABO typing
 - Rh status determination
 - Antibody screen

- Repeat antibody screen at 28 weeks
 - Low risk of isoimmunization before 28 weeks
 - Administer 300 ug RhoGAM
 - 50 ug dose not often employed clinically

Details of Screening for Fetomaternal Hemorrhage

- Rosette test
 - Qualitative: identifies Rh+ cells in Rh- patient
 - Exogenous anti-D antibodies are mixed with maternal blood and adhere to any Rh D+ fetal red cells
 - Rh D+ "indicator" red cells then added; form rosettes around coated fetal red cells
 - Clusters or rosettes easily identified under microscopy
 - Not appropriate when antenatal fetomaternal hemorrhage suspected; quantitative test should be pursued
Details of Screening for Fetomaternal Hemorrhage

- Kleihauer-Betke test; 1957
 - Semi-quantitative
 - Based on fetal blood having hemoglobin F
- Smear of maternal blood obtained
 - Dried; immersed in fixative; incubated in acid solution; stained with erythrosine B
 - Hemoglobin F-containing red cells (fetal) appear cherry red; adult red cells appear as uncolored ghost cells
 - Fetal cells counted; expressed as % of adult cells

- Kleihauer-Betke
 - Labor intensive; 10,000 cells must be counted
 - Turnaround time variable; technician dependent
 - May underestimate amount of hemorrhage
 - Cells fail to stain; decreasing Hgb F concentration
 - Overestimate if maternal blood contains hemoglobin F
 - Increases in pregnancy; peaks mid-gestation
 - SC anemia; beta thalassemia; hereditary persistence

- Flow cytometry as an alternative
 - Quantifies fetal cells by measuring fluorescence intensity of monoclonal antibodies to Hbg F
 - Fluorescence intensity fetal Hbg F-containing cells greater than adult Hgb F-containing cells
 - Also measures red cell size/distinguish from adult
 - More objective; improved precision and accuracy
 - Coefficient of variation 10% (FC) v. 153% (KB)
 - Less labor intensive; 60 minutes to perform
 - Currently, only used in 4% of US labs for screening
Management of Rh disease
Prevention

Management of Rh disease
Isoimmunization

- Risk of isoimmunization
 - Rh incompatible pregnancies
 - White 10%
 - African-American 5%
 - Asian 1%
 - If paternal status unknown, risk of Rh positive fetus approximately 62%
 - But, < 20% lead to isoimmunization
 - Role of cell-free fetal DNA for fetal RhD status
 - FN rate 2.4%; FP rate 1.1%
Management of Rh disease
Isoimmunization

- Risk of isoimmunization:
 - If fetus ABO compatible: 16%
 - If fetus ABO incompatible: 1.5-2%
 - Most protective:
 - Maternal type "O"
 - Paternal type "A", "B", or "AB"
 - First trimester: Spontaneous abortion; 2%
 - Second trimester vtp 4-5%

ACOG Practice Bulletin # 181; August 2017

Management of Rh disease
Isoimmunization

- Requirements for isoimmunization
 - Rh positive fetus
 - Rh negative mother
 - Maternal immunocompetence
 - Fetal-maternal hemorrhage

- First sensitized pregnancy usually results in minimal fetal/neonatal disease
- Subsequent gestations associated with worsening degrees of fetal anemia
- In general, these principles apply to other antigens
 - Kell, Kidd, Duffy

ACOG Practice Bulletin #75 Reaffirmed
2016

Management of Rh disease
Isoimmunization

- Erythroblastosis fetalis
 - Maternal IgG destroys fetal rbc's
 - Fetal anemia increases erythropoieses
 - If fetal bone marrow inadequate, liver and spleen are primary sites extramedullary erythropoieses
 - Secondary sites are fetal kidney, adrenal and intestinal mucosa
 - Hepatocellular damage decreases albumin
 - Decreased oncotic pressure results
 - Ultimately, portal hypertension develops

ACOG Practice Bulletin #75 Reaffirmed
2016
Management of Rh disease
Isoimmunization

- Prior obstetric history important
 - Fetal demise
 - Neonatal transfusion
- Evaluate paternal antigen status/zygosity
 - Historically, linkage analysis used
 - Quantitative PCR better tool
 - Cell-free fetal DNA for fetal RhD detection evolving
 - Reverse transcriptase PCR amplify specific RhD exons
 - If RhD positive, fetus at risk for anemia
 - If RhD negative, must confirm fetal DNA via SNPs analysis

Algorithm for determining the results of cell-free fetal DNA testing to determine the fetal RHD status. SNP, single-nucleotide polymorphism.

Management of Rh disease
Fetal RhD typing by PCR

- Typing by PCR with AF accurate/reliable
- Earlier management Rh disease with fewer invasive procedures in RhD negative fetus
- Rare discrepancies seen with 4 different sets of oligonucleotide primers (1.5%)
 - Sensitivity/specificity 98.7%/100%
 - Positive/negative predictive value 100%/96.9%
- Submit paternal and maternal blood sample with amniotic fluid when testing fetal RBC antigen status
- Evaluate for RHD pseudogene
Management of Rh disease

Isoimmunization

- "Critical" titer of 1:16
 - Varies from 1:8-1:32
 - At critical titer, additional testing required
 - First affected pregnancy only
 - Titers less reliable for Kell isoimmunization

- Evolution of surveillance tools
 - Amniocentesis
 - Essentially historical
 - Cordocentesis
 - For IUVT
 - MCA PSV Doppler interrogation

Management of Rh disease

Amniocentesis

- Fetal hydrops not consistently evident until fetal hemoglobin < 5 g/dL
- Increased AFV, increased placental thickness, pleural/pericardial effusions, ascites and subcutaneous edema
Management of Rh disease
MCA Doppler

- Non-invasive MCA PSV Doppler interrogation
- Start as early as 16-18 weeks; repeat 1-2 weeks
- Adjust for gestational age (perinatology.com)
- Not as useful after second IUIVT

Management of Rh Disease
Doppler MCA Velocimetry

Algorithm for clinic...

Management and Prevention of Red Cell Alloimmunization in Pregnancy: A Systematic Review
Moise, Kenneth J. Jr; Argoti, Pedro S.
doi: 10.1097/AOG.0b013e31826d7dc1
Management of Rh disease

Cordocentesis

Advantages include
- Direct vs. indirect evaluation
- Fetal hemoglobin and antigen status
- IUIVT superior to IUIPT
 - IUIPT at < 22 weeks for severe, recurrent disease
- Monitor post-transfusion fetal hemoglobin
- Procedure-related loss of 1-2%
- Exacerbation of maternal isoimmunization

Disadvantages include
- Procedure-related loss of 1-2%
- Exacerbation of maternal isoimmunization

Management of Rh disease

Cordocentesis/IUIVT

RBC’s typically “O”, RhD negative
- CMV negative
- Packed to hct of 75-85%
- Irradiated to prevent graft-vs-host reaction
- Maternal blood is alternative
 - Decreased risk of sensitization to new antigens
 - Fresh unit can be routinely acquired
 - Repeated maternal donations produce maternal reticulocytosis, enhances lifespan of donor cells
 - Additional folate and iron supplementation required

Management of Rh disease

Prognosis

Consistently excellent results reported
- Prior to RhoGAM
 - PNM 15/10,000 births
- Current era
 - Attributable PNM 0.54/10,000 births
- Survival rates excellent
 - Severely affected infants 72-96%
 - IUIVT (non-hydropic) 90% '
 - IUIVT (hydropic) 82%
 - Increased risk CP (2.1%), developmental delay (3.1%)
Management of Rh disease
Adjunctive therapies

- Limited benefit
 - Serial plasmaphereses
 - Oral RhD-positive red cell stroma to desensitize
 - Promethazine to decrease phagocytosis by r.e.s.
- More promising results
 - Maternal intravenous immune globulin
 - Expensive
 - Maternal immunomodulation holds promise

Management of Rh disease
Isoimmunization

Non-Immune Hydrops

Gregory L Goyert, MD
Division Head, MFM, WHS
Henry Ford Health System
Non-Immune Hydrops

NIH

- Fetal Hydrops not due to blood group incompatibility
- Presence of 2 or more abnormal fluid collections in the fetus
 - Ascites, pleural or pericardial effusions, skin edema (> 5 mm)
 - Placental thickening (> 4 cm), polyhydramnios
- Prevalence of 1:2500-1:3500 births

Etiologies of NIFH

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovascular</td>
<td>17-35%</td>
</tr>
<tr>
<td>Chromosomal</td>
<td>7-16%</td>
</tr>
<tr>
<td>Hematologic</td>
<td>6-12%</td>
</tr>
<tr>
<td>Metabolic</td>
<td>3-5%</td>
</tr>
<tr>
<td>Thoracic</td>
<td>0%</td>
</tr>
<tr>
<td>Twin-to-twin transfusion</td>
<td>3-10%</td>
</tr>
<tr>
<td>Urinary tract abnormalities</td>
<td>2-3%</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>0.5-4%</td>
</tr>
<tr>
<td>Lymphatic dysplasia</td>
<td>3-4%</td>
</tr>
<tr>
<td>Tumors, including chorangioma</td>
<td>2-3%</td>
</tr>
<tr>
<td>Renal dysplasia</td>
<td>3-4%</td>
</tr>
<tr>
<td>Syndromic</td>
<td>3-4%</td>
</tr>
<tr>
<td>Idiopathic fetal ascites</td>
<td>2-2%</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>3-10%</td>
</tr>
<tr>
<td>Unknown</td>
<td>15-25%</td>
</tr>
</tbody>
</table>

AJOG February 2015
Non-Immune Hydrops

Etiology

- Primary myocardial failure
 - Arrhythmia
 - Severe anemia
 - Cardiac malformation
 - Myocarditis
 - TTTS
- High-output cardiac failure
 - Severe anemia
 - A-V shunt

Etiology

- Decreased plasma oncotic pressure
 - Decreased albumin production
 - Hepatitis, congenital cirrhosis
 - Increased albumin excretion
 - Congenital nephrotic syndrome
 - Increased capillary permeability
 - Anoxia
 - Congenital infection
 - Placental edema

Etiology

- Obstruction of venous return
 - Neoplasm
 - Space-occupying lesions
- Obstruction of lymphatic return
 - Cystic hygroma
 - Mass effects
Non-Immune Hydrops
Diagnosis

- Crucial for determining prognosis
- Maternal evaluation
 - Blood typing and antibody screen
 - CBC and indices
 - Kleihauer-Betke
 - TORCH(SP) screen
 - Maternal medical screen including medications
- Non-invasive fetal evaluation
 - Ultrasound, echocardiography, MCA doppler
- Invasive fetal evaluation
 - Amniocentesis
 - Karyotype/CGH micro-array, AF culture and PCR (CMV, toxo), metabolic survey
 - Cordocentesis
 - Karyotype/CGH micro-array, metabolic survey, infectious disease screen, CBC, hemoglobin chain analysis, immunoglobulins

Figure 2
Non-Immune Hydrops

Prognosis

- Prognosis generally poor
 - 95% mortality if structural anomaly present
- Therapy dependent on etiology
 - Anti-Arrhythmic medications
 - Transfusion
- Best prognosis groups (70% survival)
 - Tachyarrhythmias
 - Hematologic disorders
 - Hydro/cholethorax groups

Therapy for Selected Etiologies of NIFH

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Therapy</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac tachyarrhythmia, supraventricular tachycardia, atrial flutter, atrial fibrillation</td>
<td>Maternal transplacental administration of antiarrhythmic medications</td>
<td>Treatment with antiarrhythmic medication unless gestational age is close to term or maternal or obstetrical contraindication to therapy</td>
</tr>
<tr>
<td>Fetal anemia secondary to parvovirus infection or fetomaternal hemorrhage</td>
<td>Fetal blood sampling followed by intrauterine transfusion</td>
<td>Fetal blood sampling followed by intrauterine transfusion, unless maternal or obstetrical contraindication to therapy</td>
</tr>
<tr>
<td>Fetal hydrothorax, chylothorax, or large pleural effusion associated with bronchopulmonary sequestration</td>
<td>Fetal needle drainage of effusion or thoracoamniotic shunt; if gestational age is advanced, consider drainage at delivery</td>
<td>Fetal needle drainage of effusion or thoracoamniotic shunt; if gestational age is advanced, needle drainage prior to delivery</td>
</tr>
<tr>
<td>Fetal CPAM</td>
<td>Macrocystic type: fetal needle drainage of effusion or thoracoamniotic shunt; microcystic type: maternal corticosteroid administration (betamethasone 12.5 mg IM q24 h × 2 doses or dexamethasone 6.25 mg IM q12 h × 4 doses)</td>
<td>Consider drainage of large macrocystic CPAM that has resulted in NIHF, or maternal corticosteroid administration if large microcystic CPAM has resulted in NIHF</td>
</tr>
<tr>
<td>TTTS or TAPS</td>
<td>Laser ablation of placental anastomoses or selective termination</td>
<td>Consideration of fetal intervention or laser ablation of placental anastomoses for TTTS or TAPS that has resulted in NIHF</td>
</tr>
</tbody>
</table>

Non-Immune Hydrops

ANY QUESTIONS?