Use of the Vascular Laboratory to Evaluate Patients with Peripheral Arterial Disease

M. Blair DeYoung, D.O.
Director of the Cardiac Catheterization Laboratories
McLaren Macomb and Oakland

Outline

• Arterial non-invasive studies
• Exercise stress testing
• Duplex examinations

Non-invasive Arterial Testing

• Confirm
• Localize
• Severity
• Qualitative
Non-invasive Arterial Testing

- Should detect moderate to severe disease
 - Claudication
 - Tissue Loss
 - Rest pain
- May miss mild disease
 - Exercise stress testing
- Calcified vessels
 - Toe pressures important

Segmental Arterial Pressures

- Use BP cuff to stop flow
- Pressure recorded is the pressure at the first appearance of systolic wave
- Customary to use the strongest signal (ie, DP vs. PT)
- Level of measurement is determined by the cuff,….not the probe!
- If brachial artery pressures are different, use the highest

Segmental Arterial Pressures

- Two, three or four cuff system
 - High thigh (HT)
 - Low thigh (LT)
 - Below knee (BK)
 - Ankle (A)
Sequential Arterial Pressures

- Cuff width > 50% of the diameter of limb
- Use PPG for toe pressures if Doppler signal is not obtainable
- Expect < 20 mm Hg difference between levels
- >30 mm Hg difference between levels suggests occlusion

Segmental Pressure Interpretation

<table>
<thead>
<tr>
<th>ABI’s</th>
<th>Normal variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0.95–1.1</td>
</tr>
<tr>
<td>1 level disease</td>
<td>0.8–0.95</td>
</tr>
<tr>
<td>2 level disease</td>
<td>0.5–0.8</td>
</tr>
<tr>
<td>>2 level disease</td>
<td>0.3–0.5</td>
</tr>
<tr>
<td>ABI <0.3 (<0.4 DM)</td>
<td>Rest pain or tissue loss</td>
</tr>
<tr>
<td>ABI >1.5</td>
<td>Calcification</td>
</tr>
</tbody>
</table>

Interventions

- >0.2 increase = significant improvement
- <0.2 increase = minimal improvement
Toe Pressures

Toe/Brachial Ratio
- Normal: 0.8-0.9
- Claudication: 0.2-0.5
- Rest pain: 0.0-0.2

Ulcer Healing
- <29% if TP < 20 mmHg
- 50% if TP 20-30 mmHg
- 91% if TP > 30 mmHg

Lower Extremity Arterial Study

- Segmental limb pressures (SLP)
- And
- Doppler waveforms (DW)
- Or
- Pulse volume recording (PVR)

Pulse Volume Recordings

- Air plethysmography waveform
 - Normal: Sharp upstroke/dicrotic notch
 - Mild: Absent notch/bowed downstroke
 - Moderate: Flattened peak, up/down equal
 - Severe: Low amplitude, slow rise

NORMAL SEVERE
Pulse Volume Recordings

- Air Plethysmography
 - Amplitude
 - Cardiac Output
 - Blood Volume
 - Vasomotor Tone
 - Size/Position of Extremity/Air in Cuff

Doppler Waveform Analysis

- Waveforms reflect the vascular bed of the end organ
- The flow characteristics give us our “signature” triphasic signal
Doppler Waveform

- Three components
 - Large forward flow velocity peak = systole
 - Brief phase of flow reversal = early diastole
 - Low-frequency forward flow = late diastole

Doppler Waveform

- Reflects changes in resistance
- Will be effected by
 - Body heat
 - Vasodilation with heat – lower resistance
 - Vasoconstriction with cold – higher resistance
 - Exercise
- Make sure patient rests for 5-10 min before obtaining measurements

Doppler Waveform

- Distal to a stenosis
 - Loss of flow reversal
 - Lower velocity
Exercise Testing

• 2 mph at 12% grade for 5 min
• Measure ankle pressures Q2 min x 5

Exercise Testing

• Little or no decrease in pressure from baseline = Normal
Exercise Testing

- Pressure drop, but normalizes within 2-6 min = Stenosis or occlusion at 1 level
- Large pressure drop, and remains low for up to 12 min = Multilevel disease
- Large pressure drop, and remains low for >12-15 min = Ischemic rest pain

Changes in Ankle Index after Treadmill Exercise

- Treadmill Time: 5 min
- Ankle Index: A = 100, B = 80, C = 60

Arterial Duplex

- Know the goal
- Know the anatomy (native vs. bypass)
- Identify hemodynamic lesions
- Identify plaques and calcium
Quantitative Doppler Velocity Measurements
- Quantitative
- Time consuming
- Difficult
- “Blind spots”

Qualitative Doppler Velocity Measurements
- Velocity increases at stenosis due to increased pressure gradient driving flow
- Turbulent flow is noted post-stenosis
- Severe lesions “top-out” at 400-600 cm/sec
- Quantitative measurements are made using pulsed doppler guided by color flow

Pulsatility Changes
- Proximal to stenosis
 - Increased pulsatility
 - Decreased velocity overall due to decreased flow
- Distal to stenosis
 - Decreased acceleration time
 - Broad systolic peak
 - Increased diastolic flow
 - Decreased peripheral resistance
 - Decreased velocity
Arterial Duplex Normal Values

<table>
<thead>
<tr>
<th>Artery</th>
<th>Diameter (cm)</th>
<th>Velocity (cm/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIA</td>
<td>0.6-0.9</td>
<td>98-141</td>
</tr>
<tr>
<td>CFA</td>
<td>0.6-0.9</td>
<td>90-138</td>
</tr>
<tr>
<td>SFA</td>
<td>0.48-0.72</td>
<td>77-104</td>
</tr>
<tr>
<td>Pop</td>
<td>0.4-0.6</td>
<td>55-82</td>
</tr>
</tbody>
</table>

Doppler Waveform (Peripheral)

- **Normal**
 - Triphasic

- **1-19% Stenosis**
 - Triphasic
 - Minimal spectral broadening
 - PSV < 30%
 - Normal distal WF

- **20-49% Stenosis**
 - Triphasic
 - Loss reverse flow
 - Marked spectral broadening
 - PSV 30 to 100%
 - NL distal WF